본문 바로가기
유용한 정보

<신간 소개> 금융 AI의 이해

by systrader79 2024. 8. 29.
728x90
반응형

 

불과 3년 전만 하더라도 '코딩 열풍' 이 온 사회를 휩쓸고 있었습니다. 학생이나 직장인 할 것 없이 모두 파이썬 코딩을 배우고 익히는게 새로운 트렌드로 자리잡고 있었지요. 

그런데 이런 열풍이 채 사그러들기도 전, ChatGPT와 같은 LLM이 확산되면서 트렌드는 순식간에 AI를 활용하여 일상생활에 접목하는 분위기로 급변했습니다. 코딩은 AI가 다 해주니, 예전처럼 머리 싸매가며 오랜 시간을 들여 코딩과 씨름할 필요도 없어졌습니다. 물론 코딩에 대한 아무런 지식이 없다면 AI의 포텐셜을 풀로 이용하기는 어렵지만, 깐깐한 진입 장벽을 AI가 허물어 준 것만은 부정할 수 없는 사실이겠지요?

AI를 일상 생활에 활용할 수 있는 영역 중 가장 적합한 분야가 바로 금융이 아닐까 싶습니다. 왜냐하면 금융 데이터는 잘 정제된 수치 데이터로 구성되어 있고, 데이터를 수집, 가공하기도 가장 좋기에 데이터 분석으로 부가 가치를 창출하기에 가장 이상적인 영역이라고 할 수 있기 때문입니다. 

파이썬과 같은 고급 보급형 프로그래밍 언어가 확산되면서, 개인투자자들도 기관투자자 수준의 db를 구축하여 백테스트하고 자동매매하는 것까지도 너무나 쉬워진 지금, 금융 AI를 활용할 수 있는 훌륭한 신간이 나왔습니다. 

'금융 AI의 이해' 는 다양한 금융 분야에 AI가 어떻게 활용될 수 있는지, 광범위한 영역에 대한 포괄적이고 종합적인 안내서로 금융 분야에 AI를 활용해보고 싶은 사람들에게 훌륭한 가이드가 되어 줄 것입니다. 

특별히, 퀀트로 금융 데이터를 수집하고 분석하기를 원하는 개인투자자들에게도 도움이 될만한 챕터도 한 파트로 구성되어 있어, 대표적인 금융 라이브러리와 백테스팅 엔진, 트레이딩 전략에 대한 종합적인 설명도 포함되어 있어, 트레이딩에 퀀트를 접목시키길 원하는 투자자들에게도 도움이 되리라 생각합니다. 

 

책소개

AI, 금융을 바꾸다

ChatGPT가 보여준 놀라운 성과는 모든 산업에 혁신적인 변화를 불러왔다. 금융계도 예외는 아니다. 이 책은 핀테크, 금융 투자, 신용 리스크, 금융 사기 탐지 및 방지, 프로덕트 관리, 생성형 AI로 나눠 금융계에서 AI를 활용하는 방법을 다양한 사례와 함께 알아본다. 또한, 파이썬 라이브러리인 NetworkX, OptBinning, 케라스를 활용해 실제 금융 데이터 기반인 예제를 체계적으로 실습한다. 금융과 AI의 만남을 살펴보면서 금융 AI의 전략적 방향성과 금융 AI에 대한 인사이트를 얻을 수 있을 것이다.

 

목차

추천의 글 ix
머리말 xi
이 책에 대하여 xiii

CHAPTER 1 금융과 핀테크에서의 AI 1

1.1 금융이란 무엇인가? 3
1.2 금융을 다루는 기관들 4
__1.2.1 은행(제1금융기관) 4
__1.2.2 비은행예금취급기관(제2금융기관) 4
__1.2.3 보험회사 5
__1.2.4 금융투자업자 5
__1.2.5 기타금융기관(카드사 포함) 5
__1.2.6 공적금융기관 5
__1.2.7 핀테크 6
1.3 AI와 그 주변 용어들 6
1.4 금융과 AI 8
__1.4.1 국내 금융 분야 AI 시장 규모 9
__1.4.2 금융 산업에 대한 AI의 영향력이 큰 이유 10
__1.4.3 금융 AI 트렌드 13
__1.4.4 금융 서비스에서 AI의 핵심 가치 15
__1.4.5 금융 서비스 분야에서 AI의 도입 장벽 16
1.5 금융 AI의 주요 활용 분야 18
__1.5.1 신용 평가에서 AI와 대체 데이터의 활용 19
__1.5.2 사기 탐지 및 방지: 디지털 시대의 필수 요소 21
__1.5.3 고객 서비스 26
__1.5.4 투자와 트레이딩 28
__1.5.5 준법 감시와 규제 29
__1.5.6 프로세스 자동화 31
1.6 금융 AI 핵심 문제 정의 33
1.7 금융 AI 전망과 도전적 과제들 35
__1.7.1 양질의 데이터 확보 36
__1.7.2 규제 및 보안 이슈 37
__1.7.3 기존 레거시 시스템의 한계 37
__1.7.4 윤리적 고려의 중요성 38
1.8 마무리 39

CHAPTER 2 금융 투자 영역에서의 AI 41

2.1 대표적인 금융 투자 방식 43
__2.1.1 퀀트의 기원과 AI 시대 44
__2.1.2 성장하는 알고리즘 트레이딩 시장 46
2.2 금융 투자 영역에서 AI가 각광받는 이유 46
2.3 AI를 접목한 투자의 장점과 단점 47
2.4 금융 투자 데이터 유형 49
2.5 데이터 소스 선택 51
2.6 전통적인 퀀트 투자 vs. AI 기반의 계량 투자 52
__2.6.1 전통적인 퀀트 투자 전략 54
__2.6.2 AI 기반 투자 전략 55
2.7 AI를 금융 투자에 활용할 때 주의해야 할 점 56
2.8 실제 투자 영역에서의 AI 응용 사례 57
2.9 마무리 60
실습 1 금융 시계열 및 파이썬을 활용한 전통 퀀트 방법 구현 60
실습 2 머신러닝을 이용한 투자 전략 75
실습 3 딥러닝을 이용한 투자 전략 98

CHAPTER 3 AI 기반의 신용 리스크 모델링 113

3.1 신용 리스크 관리 개요 115
__3.1.1 신용 리스크 관리의 중요성 116
__3.1.2 신용 리스크 관리의 필수성 116
__3.1.3 신용 리스크 관리의 실천 방안 116
3.2 신용 평가 모델의 활용 117
__3.2.1 신용 평가 모델의 다양한 활용 사례 117
__3.2.2 여러 나라의 신용 평가 시스템 118
__3.2.3 핀테크에서의 신용 평가 모델 활용 119
3.3 신용 리스크 관리 체계 123
__3.3.1 데이터 체계 125
__3.3.2 전략 체계 126
__3.3.3 모델 체계 128
3.4 AI 적용 관점에서의 신용 리스크 관리 영역 특징 129
3.5 신용 평가 모델 평가 지표 130
__3.5.1 K-S 통계량 130
__3.5.2 PSI 131
__3.5.3 정밀도와 재현율 132
__3.5.4 AUC-ROC 134
3.6 신용 평가 모델 개발을 위한 사전 지식 135
__3.6.1 연체 기간 136
__3.6.2 관찰 시점 137
__3.6.3 관찰 기간 137
__3.6.4 성능 기간 137
__3.6.5 종속변수 138
__3.6.6 성능 기간 설정과 빈티지 분석 139
__3.6.7 데이터 분할 전략 141
3.7 머신러닝 기반 신용 평가 모델 개발 142
__3.7.1 데이터 준비 143
__3.7.2 데이터 가공(피처 엔지니어링) 147
__3.7.3 모델링 154
__3.7.4 스코어링 155
__3.7.5 모델의 해석력 158
__3.7.6 모델 배포 159
__3.7.7 모니터링 161
3.8 마무리 161
실습 1 밑바닥부터 시작하는 머신러닝 기반 신용 평가 모델 개발 162
실습 2 OptBinning 라이브러리를 활용한 신용 평가 모델 개발 184

CHAPTER 4 AI를 활용한 금융 사기 거래 탐지 및 예방 201

4.1 금융 사기 거래 탐지의 중요성과 AI 203
4.2 이상 탐지와 사기 거래 탐지 205
4.3 금융 사기 유형 206
4.4 금융 사기의 특성 207
4.5 사기 거래 탐지와 진화하는 AI 기술 209
4.6 금융 사기 거래 탐지 및 예방 210
__4.6.1 사기 거래 탐지 및 예방 시장 규모 211
__4.6.2 금융 사기 예방 방법 212
4.7 사기 거래 탐지 및 예방 리스크 관리 전략 개발 프로세스 215
__4.7.1 리스크 관리 전략 개발 프로세스 215
__4.7.2 리스크 분석 216
__4.7.3 전략 설계 및 프로세스 디자인 217
__4.7.4 전략 효과 평가 및 진단 조율 217
__4.7.5 지속적인 개선과 최적화 217
4.8 마무리 218
실습 1 사기 거래 탐지를 위한 가장 기본적인 방법: 규칙 기반 탐지 219
실습 2 머신러닝 기반의 신용카드 사기 거래 탐지 모델 개발 223
실습 3 딥러닝 기반의 신용카드 사기 거래 탐지 모델 개발 248
실습 4 그래프 데이터를 활용한 금융 사기 거래 탐지 및 예방 259

CHAPTER 5 금융 AI 프로덕트 관리 277

5.1 데이터 파이프라인 구축 280
5.2 데이터 파이프라인 예시 282
5.3 SQL과 에어플로를 활용한 배치 처리 데이터 파이프라인 예시 284
5.4 모델 패키징 및 배포 289
__5.4.1 모델 패키징하기 289
__5.4.2 배포하기 290
5.5 프로덕션 환경에서의 모델 테스트 방법 291
5.6 AI 프로덕트 성능 모니터링 292
__5.6.1 공변량 시프트 293
__5.6.2 개념 드리프트 294
__5.6.3 모델 성능 저하를 불러오는 변화 유형 294
__5.6.4 데이터 분포 시프트를 감지하는 방법 294
5.7 AI 프로덕트의 모델 재학습 주기 296
5.8 AI 프로덕트 성과 및 가치 측정 297
__5.8.1 비즈니스 관점 297
__5.8.2 시스템적 관점 298
__5.8.3 체계적이고 정량적인 지표를 제공하자 299
5.9 마무리 300
실습 1 Evidently AI를 활용한 모니터링 301

CHAPTER 6 금융에서의 생성형 AI 활용 309

6.1 생성형 AI의 핵심 원리와 사용 방안 312
__6.1.1 데이터 수집 및 변환 315
__6.1.2 임베딩 315
__6.1.3 질의와 문서 임베딩 비교 316
__6.1.4 프롬프트 보강 316
6.2 LLM 애플리케이션을 만들기 위한 도구들 317
__6.2.1 RAG 317
__6.2.2 공통 도구 318
__6.2.3 미세 조정 319
6.3 금융에서의 생성형 AI 활용 방안 319
6.4 생성형 AI에 대한 오해와 진실 323
__6.4.1 생성형 AI 기술은 새롭다 323
__6.4.2 기반 모델이 기존의 머신러닝을 완전히 대체할 것이다 323
__6.4.3 환각 현상 때문에 생성형 AI 응용이 불가능하다 324
__6.4.4 생성형 AI가 모든 문제를 해결할 것이다 324
6.5 마무리 325

찾아보기 327

상세 이미지

 

 

너무나도 중요한 소식 블로그 (클릭)
너무나도 중요한 소식 ebook (클릭)

 

너무나도 중요한 소식

 

gospel79.netlify.app

 

한 고대 문서 이야기

한 고대 문서가 있습니다. 1. 이 문서는 B.C. 1,500년 부터 A.D 100년까지 약 1,600 여 년 동안 기록되었습니다. 2. 이 문서의 저자는 약 40 명입니다. 3. 이 문서의 고대 사본은 25,000 개가 넘으나, 사본간

gospel79.tistory.com

 

 

유튜브 프리미엄 월 1만원 할인받고 월 4000원에 이용하는 방법

올해 5월부터 월 8000원 정도이던 유튜브 프리미엄 요금이 15000원 정도로 인상됩니다. 각종 OTT 서비스, ChatGPT 같은 서비스들이 늘어나다보니 이런 거 몇 개만 이용하더라도 월 이용요금이 5만원을

stock79.tistory.com

 

 

1. 네이버 카페 '실전주식투자연구소' 로 오시면, 본 블로그의 모든 내용을 카테고리별로 정렬하여 순서대로 확인하실 수 있고, 다양한 실전 투자 정보도 얻을 수 있습니다~

 

2. 자타가 공인하는 주식 단기 시스템 트레이딩의 최고 전략가, '닥터 퀀트의 단기 트레이딩 강좌'가 뉴지스탁에서 진행중입니다. 닥터 퀀트의 강좌에서는 그동안 공개하지 않았던 무려 50개 이상의 실전 트레이딩 전략과 주기적인 업데이트 강의가 제공됩니다~

 

 

4. 여러분의 인생이 걸린 너무나도 중요한 소식 ----> 여기를 클릭하세요!

 

 

728x90
반응형

댓글